Step-and-Repeat Lithography System for Industrial Production of Photonic Patterns # PhableS™ - Step & Repeat photolithography system for high volume printing of periodic patterns - Full area patterning of 200mm and 300mm wafers - Non-contact: protects masks and substrates from damage and contamination - Cassette-to-cassette automatic wafer processing - Automatic handling of masks (industry standard 6-inch) - Up to 140mm x 140mm adjustable exposure field - Highly uniform and reproducible printing - 1D and 2D periodic pattern printing - Resolution: <65nm half pitch - · Automatic overlay alignment capability - Suitable for non-flat substrates - Suitable for thin glass substrates - Mini environment for defect control - Integrated Post Exposure Bake (PEB) module (optional) - · Low maintenance and operation costs - · Customizable platform # **Applications** ### $\boldsymbol{X}\boldsymbol{R}\left(\boldsymbol{A}\boldsymbol{R}/\boldsymbol{V}\boldsymbol{R}/\boldsymbol{M}\boldsymbol{I}\boldsymbol{R}\right)$ Near-Eye Waveguides Head-Up Displays (HUD) ### OPTOELECTRONICS DFB/DBR Lasers VCSEL Polarizer Gratings PCSEL Photonic Crystals Nanowire Devices PSS # OPTICAL COMPONENTS Telecom Gratings Anti-Reflective Surfaces Wire Grid (Polarizers) Laser Diffraction Gratings Spectrometer Gratings Sports Optics – Reticles ### **BIO / MEDICAL** Bio Molecular Sensors X-Ray Imaging # COLOR/VISUAL EFFECTS Structural Colors Security Applications LITHOGRAPHY FOR PHOTONICS # **PhableS** PhableS is a step-and-repeat lithography tool. It provides the ability to print high resolution periodic structures on wafer sizes up to 300mm in a low cost photolithography system. In addition, the tool's variable field size feature enables selective printing on multiple device masks. With automatic wafer and mask handling in a particle controlled mini- environment, the tool is suitable for high volume industrial production. Eulitha's breakthrough Displacement Talbot Lithography (DTL) technology enables high resolution printing near the wavelength limit in a non-contact configuration. Structures such as sub-micron period linear gratings and 2D patterns such as hexagonal and square gratings are printed with high uniformity and fidelity. The technique shares the same material and process solutions with photolithography methods that have been successfully used for semiconductor lithography for many decades. ### PATTERN EXAMPLES Hexagonal lattice 100nm holes, 600nm period Hexagonal lattice 300nm pillars, 600nm period Hexagonal lattice 1,5µm pillars, 3,0µm period Linear grating 50nm lines, 140nm period Rhombic lattice 200nm holes, 400nm period 300mm Substrate Square holes 500nm holes, Square lattice 200nm holes, 400nm period Variable fill-factor ## SPECIFICATIONS UV DUV | Resolution (linear grating) | <125nm half pitch | <65nm half pitch | |-----------------------------|-----------------------------------|------------------| | Wafer size | 300mm, large size on request | | | Mask format | 6" | | | Illumination uniformity | <3% | | | Operation | Automated wafer and mask handling | | | Overlay alignment | <1µm frontside, <5µm backside | | | Duty cycle control | Variable duty cycle (optional) | | | Beam size | Blade-able exposure control | | # **PhableS** PhableS is a step-and-repeat lithography tool. It provides the ability to print high resolution periodic structures on wafer sizes up to 300mm in a low cost photolithography system. In addition, the tool's variable field size feature enables selective printing on multiple device masks. With automatic wafer and mask handling in a particle controlled mini- environment, the tool is suitable for high volume industrial production. Eulitha's breakthrough Displacement Talbot Lithography (DTL) technology enables high resolution printing near the wavelength limit in a non-contact configuration. Structures such as sub-micron period linear gratings and 2D patterns such as hexagonal and square gratings are printed with high uniformity and fidelity. The technique shares the same material and process solutions with photolithography methods that have been successfully used for semiconductor lithography for many decades. ### PATTERN EXAMPLES Hexagonal lattice 100nm holes, 600nm period Hexagonal lattice 300nm pillars, 600nm period Hexagonal lattice 1,5µm pillars, 3,0µm period Linear grating 50nm lines, 140nm period Square holes 500nm holes, Square lattice 200nm holes, 400nm period Variable fill-factor Rhombic lattice 200nm holes, 135mm x 135mm exposure field 300mm Substrate ### SPECIFICATIONS UV DUV | Resolution (linear grating) | <125nm half pitch | <65nm half pitch | |-----------------------------|-----------------------------------|------------------| | Wafer size | 300mm | | | Mask format | 6" | | | Illumination uniformity | <3% | | | Operation | Automated wafer and mask handling | | | Overlay alignment | <1µm frontside, <5µm backside | | | Duty cycle control | Variable duty cycle (optional) | | | Beam size | Blade-able exposure control | |